Continuous Emissions Monitoring Systems & Monitoring Options

Matthew Boze
US EPA, Clean Air Markets Division (CAMD)
October 30-31, 2001

Continuous Emissions Monitoring Systems & Monitoring Options

Matthew Boze
US EPA, Clean Air Markets Division (CAMD)
November 1-2, 2001

Glossary

CEMS;

A "Continuous Emissions Monitoring System" is all of the equipment required for monitoring under part 75 that is used to sample, analyze, measure, and provide a permanent record of emissions in the appropriate reporting format. (see official definition in §72.2)

Part 1 Overview

- CEMS
 - Monitoring Methodologies
 - General Monitoring Components
 - Alternatives to CEMS

Monitoring Requirements - Subpart H Monitoring

- ♦ NO_x Mass Emissions (lb/hr)
- Heat Input (mmBtu/hr)
 - Required if unit monitors NO_x Emission Rate and Heat
 Input Rate to determine NO_x Mass Emissions, or
 - If required by State Rule, or
 - If the unit is subject to the requirements of 40 CFR 97 (§126 units)

Monitoring Options for Determining NO_x Mass Emissions

- ◆ NO_x Concentration (ppm) & Stack Flow Rate (scfh)
- NO_x Emission Rate (lb/mmBtu) & Heat Input Rate (mmBtu/hr)
- Low Mass Emissions Methodology

NO_x Emission Rate & Heat Input Rate Monitoring Options

- ◆ NO_x Emission Rate
 - NO_x-Diluent CEMS, or
 - Part 75, Appendix E (for gas or oil fired peaking units)
- Heat Input Rate
 - Stack Flow & Diluent (%CO2 or O2) CEMS, or
 - Fuel flow monitoring via Part 75, Appendix D

NO_x-Diluent CEMS

- Two components
 - NO_x Concentration Analyzer &
 - CO₂ or O₂ Concentration Analyzer as the Diluent
- ◆ Part 75, Appendix F § 3, provides the equations that are used to compute NO_x emission rate (lb/mmBtu) given:
 - » NO_x concentration
 - » CO₂ or O₂ concentration
 - » F-factor for the fuel combusted

Heat Input Rate from Stack Flow and Diluent System

- Components for a Stack Flow-Diluent Heat Input System
 - Stack Flow Monitor &
 - CO₂ or O₂ Concentration Analyzer as the Diluent
- ◆ Part 75, Appendix F § 5, provides the equations that are used to compute the heat input rate (mmBtu/hr) given:
 - » Volumetric Stack flow
 - » CO₂ or O₂ concentration
 - » F-factor for the fuel combusted

LME Monitoring Option for Determining NO_x Mass Emissions

- Low Mass Emissions Excepted Methodology
 - Default NO_x Emission Rate or Fuel-and-unit specific
 NO_x Emission Rate
 - Default Heat Input Rate or Long Term Fuel Flow

CEMS and Monitoring Options

CEMS	Monitoring	Data
	Options	Collection
\triangleright NO _x -Diluent CEMS	➤ Part 75, Appendix D	Data Acquisition
(NO _x monitor & CO ₂ or	fuel flow monitoring	and Handling
O2 monitor, for NO _x	(Gas & Oil units only)	System (DAHS)
emission rate)		required as part of
	➤ Part 75, Appendix E	the monitoring
\triangleright NO _x concentration	NO _x Emissions	system.
system	Estimation	
	(Gas & Oil Peaking	
➤ Stack volumetric flow	units only)	
monitoring systems		
	➤ Low Mass	No DAHS
	Emissions Unit	required
	Methodology (Gas &	
	Oil units only)	CLE

Types of CEMS

- ◆ In-situ (Wet Basis measurement in the stack)
 - Point
 - Path
- ◆ Straight Extractive (Wet or Dry Basis Measurement)
 - Hot Wet Wet Basis
 - Cool Dry with condenser near the CEMS Shelter -Dry Basis
 - Cool Dry with condenser at the probe Dry Basis
- ◆ Dilution Extractive (Wet Basis Measurement)
 - In Stack Dilution
 - Out of Stack Dilution

In-Situ CEMS

Point

- Electro-optical, or
- Electrochemical sensor
- Measurement over short distant (~cm)

Path

- Light or sound is transmitted across the stack
- The interaction with the stack gas is related back to a gas characteristic

In-Situ CEMS

- Typical Applications:
 - Opacity Measurement
 - » Path Light
 - Stack Flow
 - » Point Differential Pressure (s-type Pitot)
 - » Path Ultra-sonic (sound waves)

In-Situ CEMS

- Advantages
 - Lower cost
 - Compact
 - No CEMS Shelter
- Disadvantages
 - All analytical components on the stack
 - » More difficult to maintain and quality assure
 - » Analytical components exposed to harsh stack conditions
 - Many In-Situ CEMS do not accept calibration gas for calibration

Extractive Systems

- ◆ Representative sample of the flue gas is removed from the stack, transported to a CEMS shelter and analyzed
- Components of an extractive system
 - Probe
 - Sample lines
 - Filters
 - Moisture removal system
 - Pump
 - Analyzer
- Advantages
 - Easy analyzer access for maintenance and adjustments
 - CEMS shelter provides for good instrument life
 - Calibration with gaseous standards possible

Conventional Extractive CEMS

Climax Engineering

Hot Wet Extractive CEMS

- No condenser so moisture remains in the system throughout the sampling and measurement process
 - Heated sample line, pump and analytical chamber required to keep the wet sample above its dew-point
 - Sample is analyzed hot and wet
- Analyzers must be insensitive to sample moisture content

Hot Wet Extractive CEMS

Advantage:

 Water soluble gases including some VOCs can be measured without potential losses in the condenser system

Disadvantage:

 Heated line, pump, and analytical chamber are critical to system performance. A failure can result in corrosion, plugging, and damage to the system

Cool Dry Extractive CEMS

- Flue gas is collected and passed through a condenser to remove moisture prior to analysis
- Two Options
 - Conditioning at CEMS Shelter
 - » Heated sample line required to keep the wet sample above its dew-point until it reaches the condenser
 - Conditioning at the stack
 - » No heated line
 - » however maintenance is difficult since the conditioning components are on the stack

Basic CEMS Condenser

Climax Engineering

Cool Dry Extractive CEMS

Advantage:

- greater flexibility in the choice of analyzers (ie, heated chamber not required)
- Moisture interferences in the analytical components minimized

Disadvantage:

- Conditioning system maintenance required
- Possible low bias due to scrubbing of pollutant from sample in the condenser
 - » May lead to failed RATA tests or Bias test and necessitate a BAF
 - » Care required to minimize losses of analyte in the condensate
- Results may need to be adjusted to a wet basis for calculations

Dilution Extractive CEMS (wet basis)

- ◆ Flue gas is diluted with clean dry air to lower the dew-point of the sample
 - Eliminates the need for
 - » Heated sample lines
 - » Moisture removal system
- ◆ Dilution ratio is controlled by creating sonic flow across a critical orifice
 - Sonic flow of sample is maintained by achieving a set pressure drop across the critical orifice.
 - Sonic flow also depends upon
 - » Molecular Weight of the sample
 - » Pressure
 - » Temperature

In Stack Dilution (dilution probe)

- Critical Orifice is in the probe
- ◆ Sample Temperature is Stack Temperature
- Quicker response than out of stack dilution
- No temperature controls to maintain

Out of Stack Dilution (separate dilution unit)

- Critical Orifice is separate from the probe and outside of the stack
- ◆ Temperature must be controlled by heating
- Slower response
- ◆ Easier to replace Critical Orifice

Dilution Extractive CEMS (wet basis)

Advantage:

- No moisture transport/removal issues
 - » No loss of sample due to moisture removal
 - » No need for heated sample line after the sample is diluted

Disadvantage:

- Dilution Probe effects may bias measurement
 - » Effects for Molecular Weight can be minimized by calibrating the system with protocol gases which possess a MW representative of the flue gas
 - » Usually highly dependent upon the CO₂ concentration
 - » Bias can be both positive and negative

Gas Analysis and Measurement Principles

- Common Analytical NO_x Measurement Techniques
 - Chemiluminescence (NO)
 - Differential Ultraviolet Absorption (NO₂)
- Diluent Techniques
 - $-CO_2$
 - » Non-Dispersive Infrared (NDIR)
 - » Gas filter correlation (GFC)
 - O_2
 - » Electrocatalytic
 - » Micro Electrochemical Fuel Cell

Monitoring Location Specifications for Pollutant and Diluent Gas Monitors

- ◆ Install system at a location where the measurements will be representative of total emissions for the unit (§3.1 PS2)
- System must be able to pass a RATA
- Point Monitors must measure
 - At a point within the centroid of the stack, or
 - No less than 1.0 meter from the stack wall

Monitoring Location Specifications for Pollutant and Diluent Gas Monitors

- Path Monitors must measure
 - Within the inner area bounded by a line 1.0
 meter from the stack wall, or
 - So that 70.0% of the path is within the inner
 50.0% of the cross sectional area, or
 - Such that the path crosses through the centroid

Stack Volumetric Flow Rate Monitoring

- Differential Pressure
 - S-Type Pitot
 - Annubar
- Acoustic Sensing
 - Ultrasonic
 - Audible Sensor
- Heat Transfer Sensing
 - Heat loss from a heated body to the flue

Monitoring Location Specifications for Stack Flow Monitors

- ◆ A flow monitor location is acceptable if either
 - the location satisfies the minimum siting criteria of method 1
 - » Locate 8 stack diameters downstream & 2 upstream of any disturbance
 - the results of a flow study are acceptable
- Also the flow monitor must be able to pass the required performance tests

Alternatives to CEMS

Alternatives to Using CEMS

- ◆ CEMS are required except for cases that qualify to use the following options:
 - Appendix D Heat Input Rate from Fuel Flow Meters
 - Appendix E NO_x Emission Rate
 Estimation Procedures
 - Low Mass Emission Units

Part 75, Appendix D

- Applicability
 - May be used in lieu of flow monitoring systems for the purpose of determining the hourly heat input rate
 - Gas and Oil fired units only
- Heat input rate (mmBtu/hr) is determined from the:
 - Fuel Flow Rate (fuel flowmeter), and
 - Gross Calorific Value (GCV) of the fuel

Part 75, Appendix D (Fuel Flowmeters)

Fuel Flowmeters

- Must meet the fuel flowmeter accuracy specification for initial certification (App D § 2.1.5)
- Visual inspection of orifice, nozzle, and venturi meters every 3 years
- Must pass a fuel flowmeter accuracy test at least once every four QA operating quarters (App D § 2.1.6)
- Fuel flowmeter accuracy ≤ 2% of the flowmeter's upper range value

Part 75, Appendix D (Fuel Flowmeters)

- Types of Fuel Flowmeters
 - Orifice Plate
 - Nozzle
 - Venturi
 - Coriolis
 - Others that meet the applicable specifications

Appendix D Basic GCV Fuel Sampling Options

- Oil Sampling
 - Flow proportional/weekly composite
 - Daily manual sampling
 - Storage tank sampling (after each addition)
 - As delivered (sample from delivery vessel)
- Gas Sampling
 - Monthly Samples (pipeline natural gas, or natural gas, or any gaseous fuel having demonstrated a "low GCV variability")
 - Daily or Hourly Samples (any gaseous fuel not having a "low GCV variability")
 - Lot sampling (upon receipt of each lot or shipment)

- ◆ May be used in lieu of a NO_x-diluent CEMS for determining hourly NO_x emission rate (lb/mmBtu)
- Applicable only to Gas and Oil-Fired <u>Peaking</u>
 Units

- Peaking unit (§ 72.2 Definitions)
 - An average capacity factor of no more than 10.0% during the previous three calendar years and
 - A capacity factor of no more than 20.0% in each of those three calendar years
 - Ozone season only reporters can qualify on an ozone season only basis §75.74(c)(11)
- Initial qualification for peaking status by
 - Three years (or ozone season) of historical capacity factor data, or
 - For newer or new units, a combination of all historical capacity factor data available and projected capacity factor information

- For units that make a change in capacity factor may qualify by:
 - Collecting three calendar years of data following the change to meet the historical capacity factor specification, or
 - Collect one calendar year of data following the change showing a capacity factor of less than 10.0% and provide a statement that the change is considered permanent

- ◆ Units that hold peaking status must continue to meet both the 10% three year and 20% single year (or ozone season) criteria to retain peaking status
- ◆ If a unit fails to meet the criteria it must install & certify a NO_x CEM by January 1 of the year after the year for which the criteria are not met
- A unit may then re-qualify only by providing three new years (or ozone seasons) of qualifying capacity factor data

- ◆ The average NO_x emission rate (lb/mmBtu) is determined from
 - Periodic fuel specific NO_x emission rate testing at four, equally spaced load levels
 - » Boilers
 - ◆ Method 7E for NO_x
 - Method 3A for the diluent
 - » Stationary gas turbines
 - ◆ Method 20 for NO_x
 - Method 3A for the diluent

- ◆ Plot the NO_x Emission Rate vs. Heat Input Rate
- ◆ Use the graph of the baseline correlation results to determine the NO_x emission rate corresponding to the heat input rate for the hour
 - Linearly interpolate between reference points to the nearest 0.001 lb/mmBtu using heat input values rounded to the nearest 0.1 mmBtu/hr

NO_x Correlation Curve Segments

Low Mass Emissions Unit Methodology (§75.19)

- ◆ Procedure that may be used in lieu of CEMS or the excepted methods under App D and E for the purpose of determining hourly heat input and NO_x mass emissions
- Natural gas and fuel oil only
- ◆ NO_x emissions limitation
 - Year round reporting units: $NO_x \le 50$ tons/year
 - Ozone season only reporting units: $NO_x \le 25$ tons/control period

Low Mass Emissions Unit Methodology

Applicability:

- Natural Gas and Fuel oil combusting units only
- An initial demonstration that the unit emits no more than 50 tons of NO_x per year, or no more than 25 tons per control period ozone season only reporters
- An annual demonstration that the unit emits no more than 50 tons of NO_x per year, or no more than 25 tons per control period ozone season only reporters

◆ This methodology relies on

- Either a Default NO_x emission rate or a Fuel-and-Unit Specific NO_x emission rate, and
- Either a Maximum Rated Hourly Heat Input for the unit or records of Long Term Fuel Flow

LME - NO_x Emission Rate

- ◆ Default NO_x Emission Rate
 - Table LM-2 of §75.19(c)

Boiler	Fuel	NO _X Emission
Type	Type	Rate (lb/mmBtu)
Turbine	Gas	0.7
Turbine	Oil	1.2
Boiler	Gas	1.5
Boiler	Oil	2

- Fuel-and-Unit Specific NO_x Emission Rate
 - Perform four load Appendix E testing
 - Use the highest NO_x emission rate from the testing multiplied by 1.15 or
 - 0.15 lb/mmBtu whichever is greater

LME - Heat Input Rate

- Maximum Rated Heat Input Method
 - §72.2 defines the Maximum Rated Heat Input as "a unit-specific maximum hourly heat input (mmBtu) which is the higher of the manufacturer's maximum rated heat input or the highest observed hourly heat input"
 - Total Heat Input for the quarter is the product of the number of operating hours and the Maximum Rated Heat Input

$$HI_{qtr} = OPHrs_{qtr} \times MRHI$$

LME - Heat Input Rate

- ◆ Long Term Fuel Flow Heat Input Method
 - Fuel Flow
 - » Qualified fuel billing records
 - » A fuel measurement standard listed in §75.19(c)(3)(ii)(B)(2), or
 - A fuel flowmeter certified, maintained, and quality assured according to Part 75
 Appendix D

LME - Heat Input Rate (LTFF Method)

GCV

- Part 75, Appendix D §2.2 and 2.3, or
- Default GCV in Table LM-2
 - » Pipeline Natural Gas 1050 Btu/scf
 - » Natural Gas 1100 Btu/scf
 - » Residual Oil 19,700 Btu/lb or 167,500 Btu/gal
 - » Diesel Fuel 20,500 Btu/lb or 151,700 Btu/gal
- ◆ Total Heat Input is apportioned by load to each operating hour at the end of each reporting period
 - MDC has a module that helps in performing this task and generates EDR records for the electronic report (for single units only) - Contact Kim Nguyen

End

Questions?

